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Figure 1. Overview. (a) We propose DexArt, a task suite of Dexterous manipulation with Articulated object using point cloud observation.
(b) We experiment with extensive benchmark methods that learn category-level manipulation policy on seen objects. (c) We evaluate the
policies’ generalizability on a collection of unseen objects, as well as their robustness to camera viewpoint change.

Abstract
To enable general-purpose robots, we will require the

robot to operate daily articulated objects as humans do.
Current robot manipulation has heavily relied on using a
parallel gripper, which restricts the robot to a limited set of
objects. On the other hand, operating with a multi-finger
robot hand will allow better approximation to human be-
havior and enable the robot to operate on diverse articu-
lated objects. To this end, we propose a new benchmark
called DexArt, which involves Dexterous manipulation with
Articulated objects in a physical simulator. In our bench-
mark, we define multiple complex manipulation tasks, and
the robot hand will need to manipulate diverse articulated
objects within each task. Our main focus is to evaluate the
generalizability of the learned policy on unseen articulated
objects. This is very challenging given the high degrees of
freedom of both hands and objects. We use Reinforcement
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Learning with 3D representation learning to achieve gen-
eralization. Through extensive studies, we provide new in-
sights into how 3D representation learning affects decision
making in RL with 3D point cloud inputs. More details can
be found at https://www.chenbao.tech/dexart/.

1. Introduction

Most tools and objects humans interact with are articu-
lated objects. To allow household robots to facilitate our
daily life, we will need to enable them to manipulate di-
verse articulated objects with multi-finger hands as hu-
mans do. However, learning dexterous manipulation re-
mains a challenging task given the high Degree-of-Freedom
(DoF) joints of the robot hands. While recent work has
shown encouraging progress in using Reinforcement Learn-
ing (RL) [1, 8, 29, 69] for dexterous manipulation, most re-
search focuses on manipulating a single rigid object. The
manipulation of diverse articulated objects not only adds



additional complexity with joint DoF, but also brings new
challenges in generalizing to unseen objects in test time,
which has been a major bottleneck for RL. This requires
efforts on integrating 3D visual understanding and robot
learning on a novel benchmark.

Recent proposed robotic manipulation benchmarks [7,
12, 34, 65] play important roles in robot learning algorithm
development. For example, the MetaWorld [65] benchmark
provides more than 50 tasks for evaluating RL algorithms.
However, each proposed MetaWorld task only focuses on
one single object without considering generalization across
object instances. To enable generalizability for the robots,
the ManiSkill [19, 41] benchmark is proposed with diverse
manipulation tasks and a large number of objects to manipu-
late within each task. While this is encouraging, the use of a
parallel gripper has limited the tasks the robot can perform,
and the ways how the robot can operate. For example, it is
very challenging for a parallel gripper to pick up a bucket
using the handle.

In this paper, we propose a new benchmark for
Dexterous manipulation with diverse Articulated objects
(DexArt). We introduce multiple tasks with a dexterous
hand (the Allegro Hand) manipulating the articulated ob-
jects in the simulation. For each task, instead of operating
with a particular object, we provide a training set of diverse
articulated objects and the goal is to generalize the policy to
a different test set of articulated objects. To achieve such a
generalization, we incorporate RL with generalizable visual
representation learning: we adopt 3D point clouds as our
observations and use a PointNet encoder [44] to extract vi-
sual representations for decision making. The generalizabil-
ity of the policy depends on the 3D structure understand-
ing modeled by the PointNet encoder. We experiment and
benchmark with different methods and settings, and provide
four key observations as follows:

(i) Training with more objects leads to better general-
ization. For each task, we trained policies using varying
numbers of objects for each task and tested them on the
same set of unseen objects. We find training with more
objects consistently achieves better success rates. Similar
findings have been reported in studies on manipulation with
parallel grippers (Generalist-Specialist Learning [24], Man-
iSkill [41]). While this might not be surprising from the
perception perspective, it does present more challenges for
a single RL policy to work with different objects simultane-
ously. It highlights the importance of learning generalizable
visual representations for RL.

(ii) Encoder with a larger capacity does not necessar-
ily help. We experiment with different sizes of PointNet
encoders, and we observe the simplest one with the least
parameters achieves the best sample efficiency and success
rate, whether the network is pre-trained or not. This is sur-
prising from the vision perspective, but it is consistent with

previous literature which shows RL optimization becomes
much more challenging with large encoders [41].

(iii) Object part reasoning is essential. With multi-finger
hand interacting with different object parts, our intuition is
that object part recognition and reasoning can be essential
for manipulation. To validate our intuition, we pre-train the
PointNet encoder with object part segmentation tasks. We
show the object part pre-training can significantly improve
sample efficiency and success rate compared to approaches
without pre-training and with other pre-training methods.

(iv) Geometric representation learning brings robust pol-
icy. We evaluate the robustness of the policy under unseen
camera poses. We find that the policy trained with partial
point cloud is surprisingly resilient to variations in camera
poses, which aligns with the previous studies that use com-
plete point clouds in policies [32]. The accuracy remains
consistent even with large viewpoint variation. This is par-
ticularly useful for real robot applications as it is challeng-
ing to align the camera between sim and real.

With the proposed baselines and detailed analysis among
them, we hope DexArt benchmark provides a platform to
not only study generalizable dexterous manipulation skill
itself, but also study how visual perception can be improved
to aim for better decision making. We believe the unifi-
cation of perception and action, and studying them under
DexArt can create a lot of research opportunities.

2. Related Work
Dexterous Manipulation. Dexterous manipulation with

multi-fingered robotic hands has been a long standing prob-
lem in robotics. Previous methods formulate dexterous ma-
nipulation as a planning problem [3, 5, 13, 21, 43, 51] and
solve it with trajectory optimization [28, 39, 58]. These
methods require well-tuned dynamics model for the robot
and the manipulated object, which limits their generalizabil-
ity. On the other hand, data-driven-based methods do not
assume a pre-built model. The policies are learned either
from demonstrations using imitation learning [10, 20, 26,
48–50, 63, 68] or from interaction data using reinforcement
learning [1, 8, 23, 29, 69]. However, most methods focus on
tasks with single-body objects like grasping or in-hand ma-
nipulation. Dexterous manipulation on articulated objects
remains a challenging problem. In this paper, we propose
a new benchmark on learning generalizable manipulation
policy on articulated objects with point cloud observations.

Articulated Object Manipulation. The ability to per-
ceive and manipulate articulated objects is of vital signifi-
cance for domestic robot. There have been a lot of recent
advancement on perception of articulated objects such as
pose estimation and tracking [30, 33, 57], joint parameter
prediction [25, 40, 56, 67], part segmentation [15, 38, 64],
and dynamics property estimation [22]. On the robotics
side, previous works [11,52] also explore model-based con-



trol and planning for articulated object. A natural exten-
sion is to combine both lines of research by first estimat-
ing the articulated object model with perception algorithm
and then manipulating it with model-based control [35,59].
Another line of research bypasses the state and model esti-
mation by directly learning the actionable information from
raw sensory input [36, 62]. However, these approaches de-
fine a single-step action representation and execute it with
pre-defined controllers in an open-loop manner. Different
from these approaches, we formulate articulated object ma-
nipulation as a sequential decision making process where
visual feedback is used in closed-loop control. During pol-
icy learning, we also study how 3D articulated object repre-
sentation learning can help decision making.

Learning from Point Clouds. Point cloud learning has
been a long-last research topic in 3D vision. The pioneer
architectures for point cloud, e.g. PointNet [44, 45], SS-
CNs [18] have been widely used for geometric representa-
tion learning in part segmentation [15, 38, 64] and 3D re-
construction [15, 25] tasks. In robotics, the learned point
cloud representation also facilities down-stream manipula-
tion tasks, e.g. grasp proposal [6, 31, 46, 55], manipulation
affordance [27, 36, 37], and key points [16]. Recently, re-
searchers have explored to use point cloud as the direct in-
put observation for RL policy [8, 23, 41, 60]. Inspired by
these works, our DexArt benchmark introduces new tasks
using a multi-finger hand to operate articulated objects. It is
more challenging compared to previous environments given
the high DoF for both the manipulator and the object. To
tackle these tasks, we perform extensive experiments on
how geometric representation learning (e.g., part reasoning)
can affect decision making, which has not been thoroughly
studied before.

3. DexArt Benchmark

We propose the DexArt benchmark which contains tasks
with different levels of difficulty. It can be used to evaluate
the sample efficiency and generalizability of different policy
learning methods. In this work, we provide four dexterous
manipulation tasks, Faucet, Bucket, Laptop and Toilet, each
with a number of seen and unseen objects (see Table 1).

3.1. Task Description

Faucet. As shown in the first row of Figure 1, a robot
is required to turn on a faucet with a revolute joint. The
robot hand needs to firmly grasp the handle and then rotate it
by around 90 degrees. This task evaluates the coordination
between the motion of both dexterous hand and arm. While
a 2-jaw parallel gripper can potentially perform this task,
it heavily relies on precise arm motion due to its low DoF
end-effector. The evaluation criteria are based on the rotated
angle of the handle.

Figure 2. Tasks and Dexterous Hand. Left: visualization for all
four tasks in DexArt Benchmark. Right: visualization of Allegro
hand where red arrows indicate the revolute joint positions.

Task objects
All Seen Unseen

Faucet 18 11 7
Bucket 19 11 8
Laptop 17 11 6
Toilet 28 17 11

Table 1. Task Statistics.

Bucket. As shown
in the second row of
Figure 1, this task re-
quires the robot to lift a
bucket up. To ensure sta-
ble lifting behavior, the
robot should stretch out
its hand under the bucket
handle and hold it to construct a form closure [4]. On the
contrary, a single parallel gripper can only grasp it with
force closure [2], which can hardly achieve success without
sufficiently large friction. In evaluation, this task is consid-
ered a success if the bucket is lifted to a given height.

Laptop. As shown in the third row of Figure 1, in this
task, a robot should grasp the middle of the screen and then
open the laptop lid. This task also fits dexterous hand well.
A parallel gripper can do this by precisely plugging the lid
between its jaws. However, this constraint increases the dif-
ficulty for arm motion and requires a larger workspace to
open the lid. This task is evaluated based on the changed
angle of laptop lid.

Toilet. As shown in the fourth row of Figure 1, the task
is similar to the Laptop task, where the robot needs to open
a larger toilet lid. The task is harder as the geometry of the
lid is more irregular and diverse. The task is successfully
solved if the toilet lid is opened at a threshold degree.

3.2. Environment Setup

In our benchmark, we implement our tasks in SAPIEN
physical simulator [61] using a XArm6 robot arm (6 DoF)
with an anthropomorphic hand, Allegro Hand (16 DoF).

Preliminaries. We model our control problem with dex-
terous hand as a Markov Decision Process (MDP), M =
{S,A,R, T , ρ0, γ}, where S ∈ Rn, A ∈ Rm stand for
state and actions respectively. R : S × A → R is the
reward function that measures the task progress, where hu-
man knowledge is often incorporated to guide the accom-
plishment of challenging tasks. T : S × A → S is the
transition dynamics. ρ0 is the initial probability distribution
and γ ∈ [0, 1) is the discount factor.

Observation Space. The observation consists of two



parts. First, the proprioceptive data Sr includes the current
joint position of the whole robot, linear velocity, angular
velocity, position and pose of the end-effector palm. Sec-
ond, the partial point cloud Po captured by a depth camera
includes the articulated object and the robot. The observed
point cloud is first cropped within the robot workspace and
then down-sampled uniformly. We also concatenate the ob-
served point cloud Po with an imaged robot point cloud Pi

(see Section 4.1). All these observations are easily accessi-
ble for real-world robots and no oracle information is used.

Action Space. The action is a 22-dimensional vector
that consists of two parts, 6-DoF for arm and 16-DoF for
hand. We use an operational space control for robot arm
where the first 6-D vector is the target linear and angular
velocity of the palm. For Allegro hand, we use a joint posi-
tion controller to command the position target of 16 joints.
Both controllers are implemented by PD control.

3.3. Reward Design

The reward design for all dexterous manipulation tasks
follows three principles. (i) To ensure each task is solv-
able in a reasonable amount of time, a dense reward is re-
quired. (ii) To eliminate unexpected behavior, the reward
should regulate the behavior of policy to be natural (human-
like) and safe. (iii) The reward structure should be general
and standardized across all tasks. We decompose our tasks
into three stages: reaching the functional part, constructing
contact between the hand and manipulated objects, and ex-
ecuting task-specific actions to move the manipulated parts.

Reaching and Grasping Stage. We design a reach re-
ward for the first two stages to encourage the robot hand to
get close to the manipulated object as follows:

rreach = 1(stage == 1)min(−∥xpalm − xobject∥, λ), (1)

where 1() is an indicator function, xpalm and xobject is
the 3D position of palm and object in the world frame, λ
is a regularization term to prevent sudden surge in reward.
Equation 3.3 only considers the Cartesian distance between
hand and object, which may cause unexpected behavior,
e.g., opening the laptop lid with a clenched motion rather
pushing the side of the lid with hand. In the real world,
such motion may cause damage to the manipulated object
and robot itself. Inspired by [47], we add a contact term to
encourage better contact between fingers and object:

rcontact = 1(stage ≥ 2) IsContact ( palm, object )

AND

∑
finger

IsContact ( finger, object ) ≥ 2

 , (2)

where IsContact is a boolean function that performs col-
lision detection to check whether two links are in contact.

We believe a good contact relationship is constructed if both
the palm and at least two fingers touch the object.

Part Manipulation Stage. In the last stage, the robot
needs to manipulate the specific part of an articulated object
to move it to the given pose. The reward of this stage is
designed as follows:

rprogress = 1(stage == 3)Progress(task), (3)

where Progress is a task-specific evaluation function for
the current task progress. For example, in the Faucet envi-
ronment, we use the change of handle joint angle to indicate
task progress.

To eliminate jerky and unstable robot motion, we add a
penalty term rpenalty, which includes a L2 norm of the action
and a task-specific term. The overall reward is the weighted
sum of four reward terms. More details on the reward de-
sign can be found in our supplementary material.

3.4. Asset Selection and Annotation

We use the articulated object models from the PartNet-
Mobility [61] dataset. We manually select object models
for each task to avoid bad modeling and to ensure a con-
sistent kinematics structure. We further annotate the scale
and initial positions object-by-object to make sure they have
reasonable sizes and don’t initially intersect with the robot.
We further apply randomness to the object initial position,
i.e. for each task, we perform reasonable rotation and trans-
lation from the annotated position while making sure the
goal is still achievable, and the object is randomized from
the training set during policy learning.

4. Method
Solving dexterous manipulation tasks with RL meth-

ods suffers from high sample complexity due to high-
dimensional action space. Tasks with articulated objects
and point cloud observation increase the complexity fur-
ther. In this section, we will discuss several methods for
improving policy learning performance. In Section 4.1, we
will talk about the policy learning architecture. Section 4.2
will describe details on how to generate the data for visual
pre-training. Finally, we will discuss the pre-training meth-
ods evaluated in our benchmark in Section 4.3.

4.1. Policy Overview

Policy Learning. To achieve category-level general-
ization across diverse objects, we adopt 3D point cloud
as our observation and use Proximal Policy Optimization
(PPO) [53] as our RL algorithm. In the architecture design,
the value and policy networks share the same feature ex-
tracted from the point cloud and robot proprioception, as
shown in the right part of Figure 3. We use PointNet [44]
as the point cloud feature extractor. It is worth noting that
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Figure 3. Overview. We adopt PPO algorithm with PointNet backbone to learn dexterous manipulation on articulated objects. We use
pre-training to facilitate the policy learning process. (1) The PointNet is pre-trained on perception-only tasks, which includes segmentation,
reconstruction, SimSiam, etc. (2) The pre-trained PointNet weight is then used to initialize the visual backbone in PPO before RL training.

we employ a simple version of PointNet. The local MLP
has one hidden layer with a GELU activation function, fol-
lowed by a max pooling that directly produces the output
feature F1. Meanwhile, an MLP is used to extract output
feature F2 from the robot proprioception vector Sr. The
output feature F1 and F2 are then concatenated and passed
through the value MLP and policy MLP. We show in ex-
periments that increasing the volume of the vision extractor
actually harms policy learning.

Feature Extractor Pre-training. We investigate how
3D representation learning helps with 3D policy learn-
ing. We benchmark vision pre-training with five different
3D representation learning methods, including both self-
supervised learning and supervised learning, which will be
discussed in Section 4.3. For all methods, we pre-train a
visual model with PointNet backbone on perception-only
tasks, and then use it to initialize the feature extractor for
RL. The pre-training pipeline is illustrated in Figure 3.

Point Cloud Imagination. The point cloud RL has two
challenges. First, the hand-object interaction will cause sev-
eral occlusions. Second, the RL training can only handle
low-resolution point cloud due to the memory limitation.
Thus only few points in the observation come from the hand
fingers, which is essential information for decision making.
Inspired by [47], we leverage the robot model to compute
the finger geometry via forward kinematics. We can then
sample points Pi, called imagined point cloud, from the
computed geometry. As shown in the right part of Figure 3,
our point cloud feature extractor takes as input both ob-
served points Po and the imagined points Pi (deep-colored
points in Figure 3). This way, we provide the missing de-
tails of the robot in point cloud observation. Note that Pi is
accessible even for real robot.

Segmentation ReconstructionInput Point Cloud

Figure 4. Pre-training Visualizations. We visualize the segmen-
tation and reconstruction pre-training results on Toilet (top row)
and Faucet (bottom row).

4.2. Pre-training Datasets

DexArt Manipulation Dataset (DAM). We render the
point cloud observations with the setting as manipulation
tasks. The dataset contains 6k point clouds for each ob-
ject, including observed and imagined points, where the
state of robot and articulated object are sampled randomly,
as shown in the left column of Figure 4. For segmenta-
tion pre-training, we label the point cloud into 4 groups: the
functional part of the object, the rest of the object, the robot
hand, and the robot arm, as shown in the middle column of
Figure 4.

PartNet-Mobility Manipulation Dataset (PMM). Dif-
ferent from DAM, PMM is directly rendered from PartNet-
Mobility [61] without task information, e.g. robot. PMM
contains 46 object categories and 1k point clouds for each
category. The state of the object and the camera viewpoint
are sampled randomly. For classification, each object in the
same category shares the same label. For segmentation, we
follow the procedure in [17] to generate ground truth seg-



Task Faucet Bucket Laptop Toilet

Split Seen Unseen Seen Unseen Seen Unseen Seen Unseen

No Pre-train 0.30± 0.22 0.28± 0.21 0.51± 0.12 0.56± 0.08 0.81± 0.01 0.41± 0.09 0.71± 0.05 0.46± 0.02
Segmentation on PMM 0.27± 0.12 0.17± 0.09 0.35± 0.25 0.34± 0.24 0.85± 0.09 0.55± 0.09 0.66± 0.08 0.44± 0.02
Classification on PMM 0.20± 0.12 0.18± 0.14 0.56± 0.06 0.58± 0.12 0.80± 0.20 0.41± 0.14 0.69± 0.08 0.38± 0.03

Reconstruction on DAM 0.35± 0.02 0.21± 0.03 0.51± 0.08 0.50± 0.05 0.85± 0.04 0.54± 0.08 0.76± 0.03 0.52± 0.03
SimSiam on DAM 0.60± 0.15 0.45± 0.12 0.41± 0.30 0.38± 0.31 0.84± 0.04 0.49± 0.13 0.82± 0.02 0.50± 0.06

Segmentation on DAM 0.79± 0.02 0.58± 0.07 0.75± 0.04 0.76± 0.07 0.92± 0.02 0.60± 0.07 0.85± 0.01 0.55± 0.01

Table 2. Success Rate of Different Pre-training Methods. We report the success rate (mean ± std) on four tasks, for both seen and
unseen objects. DAM = DexArt Manipulation Dataset, PMM = PartNet-Mobility Manipulation Dataset, as described in section 4.2.

Figure 5. Segmentation After RL Tuning. We visualize the seg-
mentation results after the PointNet is tuned during policy learn-
ing. The weight from PPO point cloud feature extractor can be
directly applied back to the segmentation network to perform seg-
mentation prediction.

mentation masks for functional parts on the articulated ob-
jects.

4.3. Pre-training Methods

Supervised Pre-training. We experiment with two su-
pervised pre-training methods including semantic segmen-
tation and classification. For classification, we train a Point-
Net on PMM data to predict the label for 46 object cat-
egories. Compared to simpler tasks like grasping, articu-
lated object manipulation requires more understanding on
3D parts. The policy needs to locate the functional part and
reason how to interact with it. Thus, we also investigate how
pre-training on part segmentation can help policy learning.
We train segmentation on both DAM and PMM.

Self-supervised Pre-training. We also experiment
with two self-supervised pre-training methods, including
point cloud reconstruction and SimSiam [9]. Following
OcCo [54], we use an encoder-decoder architecture for
point cloud reconstruction on DAM dataset. The encoder is

a PointNet that extracts global embedding and the decoder
is a PCN [66] which reconstructs the original point cloud
from global embedding. The reconstruction is trained via
Chamfer loss [14]. The reconstruction results are visual-
ized in the right column of Figure 4. After pre-training, we
use the PointNet encoder to initialize the PointNet in PPO.

We follow SimSiam and design a siamese network with
PointNet. In SimSiam training, the network takes two aug-
mented views of the same point cloud, and forwards them
into the same PointNet encoder. An MLP is connected
on one side to predict the similarity while the gradient is
stopped on the other side. The method is trained to max-
imize the similarity between both sides. We pre-train the
PointNet encoder inside SimSiam on the DAM dataset.

5. Experiment
We conduct experiments on the proposed tasks including

Faucet, Bucket, Laptop, and Toilet defined in Section 3.1.
We perform experiments on three aspects: (i) We bench-
mark different pre-training methods by evaluating both seen
and unseen articulated objects for all tasks. We test the suc-
cess rate during and after training. (ii) We ablate how the
number of seen objects and the architecture size of visual
backbone can affect policy learning. (iii) We study the ro-
bustness to camera viewpoint change for different methods,
where we evaluate the task success rate when the input point
cloud is captured by cameras at novel poses. Overall, we
evaluate the methods by success rate and episodic returns
on both seen objects and unseen objects. We train RL pol-
icy with 3 different random seeds for each experiment.

5.1. Main Results

We provide the success rates of all benchmark methods
in Table 2. We compare the RL policy trained from scratch
(1st row) with five different pre-training methods (the fol-
lowing rows). The results show that proper visual pre-
training can benefit the policy learning. We highlight our
findings as follows. (i) Part segmentation boosts the policy
learning on all tasks. It performs the best on all tasks. With
segmentation pre-training, the PointNet can better distin-
guish and locate the functional parts, which is critical for ar-
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is the success rate on unseen objects, evaluated with 3 random seeds, and the shaded area indicates standard deviation. The y-axis of the
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0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s r

at
e

Faucet

0.0
0.2
0.4
0.6
0.8
1.0

Bucket

0.0
0.2
0.4
0.6
0.8
1.0

Laptop

0.0
0.2
0.4
0.6
0.8
1.0

Toilet

0 2 4 6 8 10
Environment steps (×106)

0

100

200

300

Ep
iso

di
c 

re
tu

rn

0 10 20 30 40
Environment steps (×106)

0

500

1000

0 5 10 15
Environment steps (×106)

0

100

200

0 2 4 6 8
Environment steps (×106)

0

100

200

Small PointNet Medium PointNet Large PointNet

Figure 7. Training with Different PointNet Sizes. The axes mean the same as in Figure 6. The experiments with tree curves are
segmentation pre-trained on DAM(100%), with small/medium/large PointNet described in Section 5.2.

ticulated object manipulation. (ii) Other pre-training meth-
ods to learn a representative global embedding, i.e., clas-
sification, reconstruction, and SimSiam, also improve the
policy learning in some cases, especially on Laptop task.
(iii) Tasks that involve manipulating small functional parts,
e.g. faucet handles, benefit more from segmentation pre-
training. As shown in Figure 8, the segmentation results
can predict the label of small faucet handles correctly, while
reconstruction focuses more on the global shape complete-
ness and ignores small part details. Thus, part segmentation
is a more effective pre-training method for more delicate
manipulation tasks.

5.2. Ablation Study

We ablate how the number of objects used in training,
the size of the vision extractor, and different visual repre-
sentation learning methods influence the generalizability.

Number of Seen Objects. Different from the previous
experiment in Section 5.2, we train our model and policy
using only 50% of the seen objects. We report the learning
curve and the success rate on novel objects during training
for methods using 50% and 100% of the objects. In Fig-
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Figure 8. Different Pre-train Methods. Evaluation success rate
of different methods in Faucet and Bucket tasks. The shaded area
indicates the standard deviation.

ure 6, while the convergence speed (represented by episodic
return) with 100% seen objects is slower compared with the
50% one due to more diverse object geometry, the success
rate (top row) of the 100% training on unseen objects re-
mains higher during the whole training process and for all
tasks. It demonstrates more training objects are crucial for
better policy generalizability.

Size of the Vision Extractor. We experiment with three
different sizes for PointNet: (i) The small PointNet with



one hidden layer. (ii) The medium PointNet with three hid-
den layers. (iii) The large PointNet with five hidden layers.
All other components for these three PointNet are the same.
Surprisingly, we find that the smallest PointNet achieves the
best performance for both success rate and episodic return,
as shown in Figure 7. Different from our common under-
standing from vision perspective, the smaller network not
only trains faster but also generalizes better.

Non-3D Representation. We compare our PointNet
pre-trained on DAM segmentation in Laptop task with
following 2D pre-training representation : R3M [42].

Encoder Seen Unseen

PointNet 0.78± 0.04 0.41± 0.08

ResNet-18 0.64± 0.07 0.28± 0.05

Table 3. Non-3D Representations.

In R3M, the
Ego4D human
video dataset was
used to pre-train
a ResNet-18 with
time-contrastive
learning and
video-language alignment. Table 3 shows the results of
the experiment. The results indicate that 3D visual repre-
sentation learning with PointNet is better at manipulating
objects. Compared to Non-3D representation learning, 3D
policies can achieve better manipulation performance on
both seen and unseen objects.

5.3. Robustness to Viewpoint Change

We experiment with the viewpoint change of camera in
Laptop task to evaluate the robustness of policy based on
PointNet and ResNet-18. The PointNet policy is pre-trained
on DAM segmentation and the ResNet-18 policy is pre-
trained on R3M. The viewpoint sampling procedure can be
described as follow: (i) Determine a semi-sphere for camera
pose sampling. We first compute the radius r of the semi-
sphere using the distance from the initial camera position
to the manipulated object. The center of this semi-sphere is
defined by moving along the camera optical line with dis-
tance r. (ii) Sample a point on the semi-sphere as camera
position. We uniformly sample the azimuthal angle in ev-
ery 20◦ from −60◦ to 60◦ and polar angle in every 20◦ from
−20◦ to 20◦, relative to the training viewpoint. It results in
7 × 5 = 35 camera positions in total. (iii) Rotate the cam-
era so that it points to the semi-sphere center. Using the
procedure above, we sample 35 camera poses. We set these
camera poses during the inference.

As shown in Figure 9, the trained PointNet policy shows
great robustness against viewpoint change, even though we
change the azimuthal angle by 60◦ and the polar angle by
20◦. By contrast, the success rate of the ResNet-18 pol-
icy suffers dramatically drop when the difference between
the training viewpoint and the novel evaluation viewpoint
increases. It informs us that the robustness mainly comes
from point cloud representation learning and PointNet ar-
chitecture.
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Figure 9. Success Rate under Different Viewpoints. The x-axis
is the polar angle ϕ (relative to the training viewpoint) and the y-
axis is the azimuthal angle θ on the semi-sphere centered at the
object. The z-axis represents the success rate. The viewpoint dur-
ing training is highlighted by a blue star.

6. Conclusion
We propose a new benchmark for dexterous manipula-

tion with articulated objects, and study the generalizability
of the RL policy. We experiment and benchmark with dif-
ferent methods to provide several insights: (i) RL with more
diverse objects leads to better generalizability. We find that
training with more objects leads to consistently better per-
formance on unseen objects. (ii) Large encoders may not
be necessary for RL training to perform dexterous manip-
ulation tasks. We find that, in all environments, the sim-
plest PointNet always leads better sample efficiency and
best generalizability. (iii) 3D visual understanding helps
policy learning. Part-segmentation facilities manipulation
with small functional parts while tasks with larger func-
tional parts benefit from all visual pre-training methods. (iv)
Geometric representation learning with PointNet feature ex-
tractor brings strong robustness to the policy against cam-
era viewpoint change. In conclusion, we hope DexArt can
serve as a platform to study generalizable dexterous manip-
ulation, and the joint improvement between perception and
decision making.
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